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ABSTRACT

The aim of this study was to predict SBRT response in patients with early-stage lung cancer who underwent SBRT using 4-dimen-
sional computed tomography (4DCT) radiomics. 44 cases diagnosed with early-stage lung cancer and treated with SBRT between 
2020-2024 were included in the study. The radiomic features of the patients were obtained from the planning 4DCT with the Lifex 
program. The LASSO method was used to determine important variables. The SMOTE method was used to create a balanced data 
set. SBRT response estimate (complete response/partial response/stable response) was created using artificial intelligence methods 
using important variables. Median BED10 was 100 (min: 72, max: 132) Gy. SBRT scheme was applied as 8-12.5 Gy x 4-6 fr. Median 
PFS and OS after SBRT were 15 and 20 months at median 20-month follow-up. SBRT response assessment was performed us-
ing RECIST criteria. Complete, partial and stable response rates among patients were 36.4%, 36.4% and 27.3%, respectively. 7 of 
55 radiomic features obtained with Lifex program were determined as significant variables with LASSO method. Prediction models 
were created with 5 different artificial intelligence algorithms using 7 significant variables. When the test groups are examined, SBRT 
response prediction was performed with 71%, 78%, 64%, 92% and 72% accuracy rates using MLPNN-1, MLPNN-2, ANFIS-1, 
ANFIS-2 and MLPC algorithms, respectively. Radiomics are easy to obtain, non-invasive and contains patient-specific information. 
However, the imaging method, segmentation differences between users, obtaining Radiomics and creating prediction algorithms 
are quite heterogeneous, and standardization should be provided with multi-center studies with more patients. Radiomics can be a 
potential biomarker in SBRT response prediction when these steps are standardized. In the current study, the highest accuracy rate 
was created with the ANFIS-2 algorithm and studies with more patients are needed.
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INTRODUCTION

Lung cancer is the most common cause of cancer-
related deaths.1 With the increased availability of 
screening methods and computed tomography, ear-
ly-stage lung cancer is more frequently detected. 
The gold standard for treating early-stage lung can-
cer is surgery. However, in some cases, especially 
those with a long-term history of smoking, surgery 
cannot be performed due to insufficient lung and 
heart function. Sometimes patients do not accept 
surgery due to surgical complications and the risk 
of surgical mortality. For these reasons, the stand-
ard treatment for patients who cannot undergo sur-

gery is stereotactic body radiotherapy (SBRT).2 
The 3-year local control rate with SBRT is 90%, 
comparable to surgery.3 SBRT is a noninvasive ra-
diotherapy technique that uses multiple small and 
precise beams of radiation to deliver high doses to 
tumors in extracranial areas in 1 to 5 fractions.4

Response rates are not always similar when the 
same dose of SBRT is applied to patients with 
the same tumor and patient characteristics. While 
some patients who receive similar treatment at a 
similar stage achieve a complete response, others 
may progress. 



28    Number: 1   Volume: 35   Year: 2025   UHOD

International Journal of Hematology and Oncology

For this reason, personalized treatment is gaining 
importance in oncology. Methods that allow for 
more detailed evaluation of the tumor are needed 
for personalized treatments. The suffix “-omics” is 
widely used in biological disciplines to indicate the 
extraction of important information from a large 
dataset. Radiomics is the extraction of quantitative 
information from medical imaging data.5 Radiom-
ics is an emerging field of research that can extract 
features from medical images that the clinician 
cannot see or measure with the naked eye.These 
features can be used to create models for clinical 
outcomes, including information on diagnostic, 
prognostic or oncological outcomes and treatment 
toxicities.6

In radiological practice, imaging features other 
than size measurements are descriptive and quali-
tative. Quantitative features of imaging data can 
be better captured by radiomic features, which are 
higher-order measurements. Quantitative tumor in-
formation that is generally invisible to the human 
eye can be obtained with the help of radiomics.7 
Radiomic image features can increase the accuracy 
of tumor response prediction to SBRT by detecting 
quantitative features of the tumor that are not ob-
served by a physician. In the current study, it was 
aimed to predict the treatment responses of 44 pa-
tients who underwent SBRT with early-stage lung 
cancer diagnosis in the Department of Radiation 
Oncology between 2020-2024 with radiomics.

PATIENTS AND METHODS

Patient Selection and Post-Treatment Follow-up

Between 2020 and 2024, 44 patients diagnosed 
with early-stage lung cancer with 4DCT simula-
tions and who underwent SBRT were included in 
the study. Patients who were > 18 years old, had 
a KPS ≥ 60, completed their treatment as planned, 
and came to their follow-ups regularly for response 
evaluation and had the requested tests performed 
were included. In the early-stage lung cancer 
group, patients with T3 mediastinal region inva-
sion, regional lymph node or distant metastasis 
detected, and previously treated with RT within 
the planned volume were not included in the study. 
Cases with hilar and/or mediastinal lymph nodes 
≤ 1 cm and no involvement on Positron Emission 

Tomography-Computed Tomography (PET-CT) 
were considered N0, and cases with lymph node 
pathology negative for cases > 1 cm and/or abnor-
mal involvement on PET-CT were also considered 
N0. Some cases underwent SBRT without tissue 
diagnosis due to complications secondary to biop-
sy/patient refusal of biopsy. In patients without tis-
sue diagnosis, the tumor was considered malignant 
if it progressed on follow-up thorax CT and had 
radiological malignant characteristics and if there 
was involvement on FDG-PET-CT. Patients were 
evaluated at the Chest Diseases Oncology Coun-
cil prior to SBRT. The council includes a radiation 
oncologist, a chest diseases specialist and a radi-
ologist, and a thoracic surgeon’s opinion is always 
sought for operability. The council evaluates imag-
ing methods and, if available, biopsy and patholo-
gy-based staging, and a treatment decision is made. 
As recommended in the RTOG 0915 study, PET-
CTs are requested within 8 weeks before SBRT.8

Follow-up was planned at 1st month after SBRT 
and then every 3 months for the first 3 years, eve-
ry 6 months for the 4th-5th years and then annu-
ally. Thoracic CT was requested from the patients 
within 1-3 months after SBRT and PET CT was 
requested 3 months after RT, and their responses 
were evaluated multidisciplinary. PET-CTs were 
requested in the 1st year of follow-up as recom-
mended in the RTOG 0915 study.8

Tumors were evaluated at each follow-up visit us-
ing the Response Evaluation Criteria in Solid Tu-
mors, and the response was graded according to 
the criteria proposed in the Response Evaluation 
Criteria in Solid Tumors Guideline version 1.1.5.9

Treatment Planning

Patients were immobilized on a T-bar/Wingboard 
with their hands above their heads in the supine 
position. 1-2 mm thick images were obtained be-
tween the cricoid cartilage and the upper border 
of the L2 vertebra with GE Discovery RT CT® 
devices. An external respiratory tracking system 
(Real-time Position Management [RPM] System, 
Varian ® Medical Systems, Palo Alto, CA, USA) 
was used in 4D-CT. The RPM system uses an in-
frared tracking camera to determine the phases of 
the respiratory cycle. For all patients, 4DCT con-
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sisting of 10 respiratory phases was obtained and 
these 10 phases were determined as a percentage of 
the respiratory cycle. For the internal target volume 
(ITV), the clinician first determined in which phas-
es the treatment would be performed and MIP was 
obtained over these phases. The gross tumor vol-
ume (GTV) was contoured over the 4DCT MIP and 
the ITV was obtained by merging these volumes.

A 3-5 mm isotropic margin was given around the 
ITV to create the planning target volume (PTV). 
The patients were treated with 6 MV-FFF energy 
and partial volumetric arc therapy (VMAT). All pa-
tients received SBRT with the Varian TrueBeam® 
linear accelerator. Based on the RTOG 0915 study 

as the planning criterion, planning was made in 
such a way that at least 95% of the PTV would re-
ceive the prescribed dose.8 Varian Real-Time Posi-
tion Management was used to monitor the patient’s 
breathing.

Different fractionation schemes were used depend-
ing on the location of the tumor. In ultracentral 
tumors, regimens with lower BED10 values such 
as 8-9 Gy x 5-6 fractions were preferred, while in 
central and peripheral tumors, regimens with high-
er BED10 values of 10-12 Gy x 5 fractions were 
preferred. Control was performed with 3D-CBCT 
images before and after SBRT application in each 
fraction.

Table 1. First and Second Order Radiomics

First Order	 CONVENTIONAL_HUmin, CONVENTIONAL_HUmean	, 
	 CONVENTIONAL_HUstd, CONVENTIONAL_Humax, 	
	 CONVENTIONAL_HUSkewness, CONVENTIONAL_HUKurtosis, 
	 CONVENTIONAL_HUExcessKurtosis, DISCRETIZED_HUmin, 
	 DISCRETIZED_HUmean, DISCRETIZED_HUstd, DISCRETIZED_HUmax, 
	 DISCRETIZED_HUSkewness, DISCRETIZED_HUKurtosis, 
	 DIS CRETIZED_HUExcessKurtosis, DISCRETIZED_HISTO_Entropy_log10, 
	 DISCRETIZED_HISTO_Entropy_log2, DISCRETIZED_HISTO_Energy, 
	 DISCRETIZED_AUC_CSH, SHAPE_Volume (mL), SHAPE_Volume (vx), 
	 SHAPE_Sphericity, SHAPE_Surface (mm2), SHAPE_Compacity

Second Order	 GLCM_Homogeneity, GLCM_Energy, GLCM_Contrast, GLCM_Correlation, 
	 GLCM_Entropy_log10, GLCM_Entropy_log2,GLCM_Dissimilarity, 
	 GLRLM_SRE, GLRLM_LRE, GLRLM_LGRE, GLRLM_HGRE, 
	 GLRLM_SRLGE, GLRLM_SRHGE, GLRLM_LRLGE, GLRLM_LRHGE, 
	 GLRLM_GLNU, GLRLM_RLNU, GLRLM_RP, NGLDM_Coarseness, 
	 NGLDM_Contrast, NGLDM_Busyness, GLZLM_SZE, GLZLM_LZE, 
	 GLZLM_LGZE, GLZLM_HGZE, GLZLM_SZLGE, GLZLM_SZHGE, 
	 GLZLM_LZLGE, GLZLM_LZHGE, GLZLM_GLNU, GLZLM_ZLNU, 
	 GLZLM_ZP

* GLCM: The grey level co-occurrence matrix                          ** GLRLM: The grey-level run length matrix 

** GLRLM_SRE: Short-Run Emphasis                                      ** GLRLM_LRE: Long-Run Emphasis             

** GLRLM_LGRE: Low Gray-level Run Emphasis                     ** GLRLM_HGRE: High Gray-level Run Emphasis  

** GLRLM_SRLGE: Short-Run Low Gray-level Emphasis         ** GLRLM_SRHGE: Short-Run High Gray-level Emphasis 

** GLRLM_LRLGE: Long-Run Low Gray-level Emphasis          ** GLRLM_LRHGE: Long-Run High Gray-level Emphasis 

** GLRLM_GLNUr: Gray-Level Non-Uniformity for run              ** GLRLM_RLNU: Run Length Non-Uniformity  

** GLRLM_RP: Run Percentage

***NGLDM: The neighborhood grey-level difference matrix

****GLZLM: The grey-level zone length matrix                         **** GLZLM_SZE: Short-Zone Emphasis

**** GLZLM_LZE: Long-Zone Emphasis                                  **** GLZLM_LGZE: Low Gray-level Zone Emphasis

**** GLZLM_HGZE: High Gray-level Zone Emphasis                **** GLZLM_SZLGE: Short-Zone Low Gray-level Emphasis

****GLZLM_SZHGE: Short-Zone High Gray-level Emphasis    ****GLZLM_LZLGE: Long-Zone Low Gray-level Emphasis

****GLZLM_LZHGE: Long-Zone High Gray-level Emphasis     ****GLZLM_GLNUz: Gray-Level Non-Uniformity for zone

****GLZLM_ZLNU: Zone Length Non-Uniformity                      ****GLZLM_ZP: Zone Percentage
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No concomitant chemotherapy/immunotherapy or 
targeted therapies were administered during SBRT. 
There was a minimum of 48 hours between two 
fractions. Patients were evaluated twice weekly 
in the outpatient clinic for possible toxicity, their 
symptoms were questioned, and physical examina-
tions were performed.

Radiomic Feature Extraction

Radiomic features were obtained using computed 
tomography (CT) images taken for RT simulation 
purposes at Eskişehir Osmangazi University Fac-
ulty of Medicine, Department of Radiation Oncol-
ogy. The GTV region of interest (ROI) informa-
tion was obtained from the RT treatment planning 
system (Varian Eclipse model (Version: 15.6), 
Varian ® Medical Systems, Palo Alto, CA, USA). 
The LIFEx (Version: 7.0.0) program was used to 
extract radiomic features. No preprocessing was 
performed while extracting the radiomic features. 
Spatial resampling was normalized to 1 mm x 1 
mm x 1 mm, with a gray level number of 400 and a 
bin width of 10. With these parameters set, a three-
dimensional (3D) processing was performed, and a 
total of 55 radiomic features, including first-order 
and second-order features, were extracted (Table 1).

Statistical Analysis and Artificial Intelligence

Statistical Analysis and  Radiomics Feature 
Selection

A Least Absolute Shrinkage and Selection Op-
erator (LASSO) logistic regression model with a 
binomial family and 10-fold cross-validation was 
employed to identify the most predictive radiomic 
features. LASSO is particularly advantageous in 
high-dimensional datasets where multicollinearity 
and the presence of many irrelevant features can 
complicate traditional regression methods. By ap-
plying an L1 penalty, LASSO effectively shrinks 
the coefficients of less relevant features toward 
zero, leaving only those variables with the most 
predictive power. This helps mitigate the overfit-
ting problem and improves the interpretability of 
the model by selecting a parsimonious set of fea-
tures.

The LASSO model was implemented using the 
glmnet package in R. We performed 10-fold cross-
validation to determine the optimal lambda value, 
which controls the strength of the L1 penalty. The 
lambda value that minimized the cross-validated 
deviance was selected to balance model complex-
ity and prediction accuracy. Cross-validation splits 
were performed on the training data, ensuring that 
the model was  not overfitted to any particular fold, 
thus enhancing the generalizability of the results.

For each feature, coefficients were calculated, and 
those with non-zero values were considered as sig-
nificant predictors. The final model included sig-
nificant radiomic features, which were robustly as-
sociated with the treatment response based on their 
respective non-zero coefficients.10-12

Artificial Intelligence-Based Prediction 
Algorithms

Data and Data Preparation

A data table was obtained with 55 columns con-
sisting of the features and the number of 51 rows 
which is determined with the tumor of patients. Tu-
mor response was also added as an output variable 
to this data table. The output variable was divided 
into three classes: Complete, partial and stable re-
sponse. 

Developing Models

Since the distribution of the numbers of these class-
es in the output variable is imbalanced, the number 
of the data was increased and the class distribution 
was balanced with the Synthetic Minority Over-
sampling Technique (SMOTE) algorithm by using 
Python.13 Finally, the data was randomly divided 
into 80% training and 20% test groups, using the 
code prepared in Python programming language. 

Developing models are planned under three main 
headings, namely artificial neural networks (Mul-
tiple-layer perceptron neural network-MLPNN), 
an adaptive network-based fuzzy inference system 
(ANFIS) and Multi-layer Perceptron (MLP) Clas-
sifier. MLPNN and ANFIS models were developed 
using MatLab Toolbox, while MLPClassifier net-
works were developed using Python programming 
language. A randomly allocated training data-
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set was used to develop the models and then the 
trained models were tested with test data.

Multiple-layer Perceptron Neural Network
(MLPNN)

MLPNN models were developed and trained in 
two different types. In the first model training pro-
cess, there are three layers:  input, hidden and out-
put layer. There are 10 neurons in the hidden layer. 
The network type is “feed-forward backpropaga-
tion”, the training function is “trainlm”, the adap-
tation learning function is “learngdm”, the perfor-
mance function is Mean squared error (MSE) and 
the transfer function is “tansig”. 

Accuracy, recall, precision and F1 score were used 
to evaluate the performance results of the models. 
Recall is defined as the ratio of the total number 
of correctly classified positive classes divided 
by the total number of positive classes. In other 
words, it defines how many of the positive classes 
are correctly predicted. Also, precision is defined 
as the ratio of the total number of correctly clas-
sified positive classes divided by the total number 
of predicted positive classes. F1 score is a number 
between 0 and 1 and is the harmonic mean of preci-
sion and recall.14

In the second model training process, there is an 
input layer, two hidden layer and an output layer. 
There are 10 neurons in first the hidden layer and 5 
neurons in the second hidden layer. Similarly, the 
network type is “feed-forward backpropagation”, 
the training function is “trainlm”, the adaptation 
learning function is “learngdm”, the performance 
function is Mean squared error (MSE) and the 
transfer function.

Adaptive Network-based Fuzzy Inference System 
(ANFIS)

Neuro-fuzzy systems are the combination of the 
parallel computation and learning capabilities of 
artificial neural networks with the ability to derive 
conclusions using expert knowledge of fuzzy log-
ic. As a result, artificial neural networks become 
more understandable thanks to neuro-fuzzy sys-
tems. ANFIS can assign all possible rules accord-
ing to the structure created for the problem to be 

solved or allows the assignment of rules with the 
help of data. ANFIS’s rule creation or rule creation 
allows it to benefit from the opinions it receives. 
Therefore, since it allows artificial neural networks 
to benefit from expert opinions in many prediction 
problems, it provides better results according to the 
mean square error criterion. ANFIS’s learning al-
gorithm is a hybrid learning algorithm consisting 
of the combination of the least squares method and 
the backpropagation learning algorithm.15

Similarly, we designed two different models in 
ANFIS. In developing first model (ANFIS-1), sev-
en input and one output variables were used. Tri-
angular membership function was preferred in the 
process of fuzzification the input variables. Other 
input variables are also defined with similar trian-
gular membership functions and three membership 
functions are used to fuzzification the crisp values. 
The developing ANFIS-1 model continued training 
until it reached root mean square error (RMSE) = 
0.00908 with 30 epochs.

In the ANFIS second model (ANFIS-) training pro-
cess, there are the same seven input variables and 
one output variable. But in the AFIS-2 model, the 
trapezoidal membership function was preferred in 
the fuzzification process of the seven input vari-
ables. Similarly, for the other input variables, three 
trapezoidal membership functions are used to fuzz-
ification the crisp values. The developing ANFIS-2 
model continued training until it reached RMSE = 
0.198964 with 30 epochs.	

MLP Classifier	

To create the fifth model using the same dataset, 
a deep classifier algorithm, MLPClassifier, was 
used. This model was designed using libraries in 
the Python programming language. Three hidden 
layers were preferred in MLPClassifier model. The 
number of neurons in the hidden layers  were 4, 
7 and 8. “Tanh” was preferred as the activation 
function. ‘lbfgs’ algorithm was preferred to opti-
mize the MLPClassifier model. Solver is used for 
classification problems and uses the limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm for optimizing the weights. As another 
parameter, the maximum iteration number was se-
lected as 500.
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Testing the Models

We applied our data set aside for testing to devel-
oped five different models whose training process 
was completed.

Ethic Committee Permission: Permission was 
obtained from Osmangazi University Non-Inter-
ventional Clinical Research Ethics Committee 
(Acceptance date: 26 September 2023, Decision 
Number: 07).

RESULTS 

Patient, Tumor Characteristics, and Oncological 
Outcomes

The study included patients who were planned to 
receive 4DCT-guided SBRT, completed their treat-
ments as planned, and attended regular follow-ups. 
The median age was 69 years, 8 (18.2%) of the 
patients were female and 36 (81.8%) were male. 
The median tumor size was 2.3 cm, and the me-
dian GTV and PTV volumes were 10.6 cc and 28.8 
cc, respectively. The SBRT dose was 8-12.5 Gy 
x 4-6 fractions. BED10 was determined as α/β= 
10 and was calculated with the formula D (1 + d/
[α/β]). The median BED10 value was 100 (min: 
72, max: 132) Gy. During the median follow-up of 
20 months, 33 (75%) patients were alive and 11 
(25%) patients had died. Of the patients who died 
during follow-up, 4 died due to cancer progression, 
6 died due to non-cancer reasons, and 1 died due to 
systemic treatment toxicity due to disease progres-
sion.

Median OS and PFS after SBRT were 20 and 15 
months, respectively. RECIST assessment was 
performed with thorax CT 3 months after the end 
of SBRT, and there were 16 (36.4%) complete re-
sponses (CR), 16 (36.4%) partial responses(PR), 
and 12 (27.3%) stable responses(SR). Response 
assessment based on BED10 values showed that 
among the six patients with a BED10 value be-
low 100 Gy, 2 (33.3%) achieved CR, 3 (50.0%) 
had PR, and 1 (16.6%) had SR. Among the 38 pa-
tients with a BED10 value of 100 Gy or higher, 14 
(36.8%) achieved CR, 13 (34.2%) had PR, and 11 
(28.9%) had SR.Patient, tumor characteristics, and 
oncologic outcomes are given in Table 2.

Important Radomic Features 

A total of 7 out of 55 radiomic features were de-
termined as important variables with the LASSO 
method. Four of these variables are first order and 
three are second order radiomic features. The first 
order radiomics determined as significant variables 
are ‘CONVENTIONAL_HUmin’, ‘CONVEN-
TIONAL_HUKurtosis’, ‘DISCRETIZED_HUKu-
rtosis’, ‘DISCRETIZED_HUExcessKurtosis’, 
while the second order radiomics are ‘Gray Level 

Table 2. Patient, tumor characteristics and oncological out-
comes

Features	 N (%) / Median (Minimum, 
Maksimum)
Age	 69 (52-86)
KPS	 70 (70-80)
Gender
   Female	
   Male	 36 (82%)
Tumor Location
Right lower lobe	 8 (18%)
Right middle lobe	 1 (2%)
Right upper lobe	 14 (32%)
Left lower lobe	 10 (23%)
Left upper lobe	 11 (25%)
Tumor size (cm)	 2.35 (0.70-6.40)
GTV (cc)	 10.65 (0.90-50.90)
PTV(cc)	 28.85 (6-88.20)
Fraction dose (Gy)	 10 (8-12.5)
Number of fractions	 5 (4-6)
BED10	 100 (72-132)
RECIST 1.1
Complete response	 16 (36%)
Partial response	 16 (36%)
Stable response	 12 (28%)
Current Status
Alive	 33 (75%)
Ex	 11 (25%)
OS (ay)	 20 (4-54)
PFS (ay)	 15 (4-51)

KPS: Karnofsky performance status, GTV:Gross tumor volume, 

PTV: planning target volume, Gy:Gray, BED: Biologically effective 

dose, OS: Overall survival, PFS: Progression-free survival
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Co-occurrence Matrix (GLCM)_Correlation’, 
‘Neighborhood Gray-Level Dependence Matrix 
(NGLDM)_Coarseness’ and ‘NGLDM_Busy-
ness’.

Results of AI-Based Prediction Algorithms

The confusion matrix showing the training results 
of the first model developed (MLPNN-1) is given 
in Table 3. The diagonal cells in this table show 
correct predictions, while the other cells show in-
correct predictions. In general, as a result of the 

training of the developed MLPNN-1 model, 48 
out of 56 data were predicted correctly (85.7%). 
The training performance results of our MLPNN-1 
model are shown in Table 4. 

When the training performance of the MLPNN-1 
model is examined in terms of its success in cor-
rectly classifying classes, that is, the recall value 
reveals high accuracy values such as 0.840 for 1 
(complete response), 0.850 for 2 (partial response) 
and 0.909 for 3 (stable response). The mean recall 
value is 0.866. 

Table 3. The confusion matrix of training group models 
 
MLPNN-1	  	                 Predicted classes 			   Total

 		  1 (Complete)	 2 (Partial) 	 3 (Stable)	

True classes	 1 (Complete)	 21	 4	 0	 25
	 2 (Partial)	 1	 17	 2	 20
	 3 (Stable)	 0	 1	 10	 11
Total	  	 22	 22	 12	 56
 
 MLPNN-2		                  Predicted classes 			   Total

		  1 (Complete)	 2 (Partial) 	 3 (Stable)	

True classes	 1 (Complete)	 24	 1	 0	 25
	 2 (Partial)	 6	 12	 2	 20
	 3 (Stable)	 0	 0	 11	 11
Total	  	 30	 13	 13	 56
 
 ANFIS-1 		                 Predicted classes 			   Total
 
	 1 (Complete)	 2 (Partial) 	 3 (Stable)	
True classes	 1 (Complete)	 25	 0	 0	 25
	 2 (Partial)	 0	 20	 0	 20
	 3 (Stable)	 0	 0	 11	 11
Total	  	 25	 20	 11	 56
 
 ANFIS-2 		                   Predicted classes 			   Total

	 1 (Complete)	 2 (Partial) 	 3 (Stable)	
True classes	 1 (Complete)	 20	 5	 0	 25
	 2 (Partial)	 1	 19	 0	 20
	 3 (Stable)	 0	 3	 8	 11
Total	  	 21	 27	 8	 56
 
 MLP Classifier 		                   Predicted classes 	 Total
	 1 (Complete)	 2 (Partial) 	 3 (Stable)	

True classes	 1 (Complete)	 24	 1	 0	 25
	 2 (Partial)	 0	 20	 0	 20
	 3 (Stable)	 0	 0	 11	 11
Total	  	 24	 21	 11	 56



34    Number: 1   Volume: 35   Year: 2025   UHOD

International Journal of Hematology and Oncology

The precision values for 1 (complete response), 2 
(partial response) and 3 (stable response) which is 
all the predictive positive classes are 0.955, 0.772 
and 0.833, respectively. This reveals a very satis-
factory result for the developed model.

When the F1-score, which is the success measure-
ment criterion of the developed model, is exam-
ined, a similar high success is seen (values range 
from 0.810 to 0.894).

In order to determine the training performance re-
sults of the developed MLPNN-2 model for each 
class in detail, the confusion matrix shown in Ta-
ble 3. The F1-score value, which is a generally 
accepted metric, has a good performance value of 
0.839 for MLPNN-2. When Table 4 is examined 
in detail, similar success results to the success of 
the MLPNN-1 model in class prediction are also 

seen in MLPNN-2.The training results of the sec-
ond model developed (MLPNN-2) are shown in 
Table 4. 

The confusion matrix shown in Table 3 was cre-
ated in order to determine the training performance 
results of the developed ANFIS-1 model for each 
class in detail.The training results of the developed 
ANFIS-1 model are shown in Table 4. In this ta-
ble, the diagonal cells show the correct predictions, 
which shows that 56 out of 56 data were predict-
ed correctly (100%) for the training result of the 
developed ANFIS-1 model. The accuracy value, 
which is a generally accepted metric, has a good 
performance value of 1.000 for ANFIS-1. It is seen 
that the accuracy, precision and F1 score values of 
the ANFIS-1 model are above 1.000 for each class.

The training results of the developed ANFIS-2 

Table 4. The training performance results of developed models

MLPNN-1 
Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score

1 (Complete)	 0.840	 0.866	 0.955	 0.854	 0.894	 0.858
2 (Partial)	 0.850		  0.772		  0.810	
3 (Stable)	 0.909		  0.833		  0.870	
Accuracy	 0.857

MLPNN-2 
Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score
1 (Complete)	 0.960	 0.853	 0.800	 0.856	 0.872	 0.839
2 (Partial)	 0.600		  0.923		  0.727	
3 (Stable)	 1.000		  0.846		  0.917	
Accuracy	 0.839

ANFIS-1 
Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score
1 (Complete)	 1.000	 1.000	 1.000	 1.000	 1.000	 1.000
2 (Partial)	 1.000		  1.000		  1.000	
3 (Stable)	 1.000		  1.000		  1.000	
Accuracy	 1.000

ANFIS-2 
Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score
1 (Complete)	 0.800	 0.826	 0.953	 0.885	 0.870	 0.840
2 (Partial)	 0.950		  0.703		  0.806	
3 (Stable)	 0.727		  1.000		  0.842	
Accuracy	 0.839

MLP Classifier 
Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score
1 (Complete)	 0.960	 0.987	 1.000	 0.984	 0.980	 0.985
2 (Partial)	 1.000		  0.952		  0.976	
3 (Stable)	 1.000		  1.000		  1.000	
Accuracy	 1.000
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model are summarized in Table 3. When the ra-
tio of the sum of the diagonal cells in Table 4. It 
is determined that the accuracy, precision and F1 
score values of the ANFIS-2 model for each class 
are above 0.8.

The training results of the developed MLP Classi-
fier model are shown in Table 3. In this table, the 
diagonal cells show the correct predictions, and it 
is seen that 55 out of 56 data were predicted cor-
rectly (98.21%) for the training result of the devel-
oped MLP Classifier model. In Table 4 was created 
to determine the training performance results of 

the developed MLP Classifier model for each class 
in detail. The accuracy value, which is a generally 
accepted metric, has a good performance value of 
0.9821 for the MLP Classifier. The average values 
of accuracy, recall, precision and F1 score of the 
MLP Classifier model are 0.982, 0.987, 0.984 and 
0.985, respectively.

The confusion matrices of the algorithms created 
with post-training test data are given in Table-5 and 
the performance scores of the algorithms are given 
in Table 6. 

Table 5.  The confusion matrix of test group models
 
 MLPNN-1 		                      Predicted classes 		  Total
 
		  1 (Complete)	 2 (Partial) 	 3 (Stable)	
True classes	 1 (Complete)	 1	 0	 0	 1
	 2 (Partial)	 2	 7	 0	 9
	 3 (Stable)	 0	 2	 2	 4
Total	  	 3	 9	 2	 14
 
 MLPNN-2		                       Predicted classes 		  Total
 
		  1 (Complete)	 2 (Partial) 	 3 (Stable)	
True classes	 1 (Complete)	 1	 0	 0	 1
	 2 (Partial)	 0	 8	 1	 9
	 3 (Stable)	 0	 2	 2	 4
Total	  	 1	 10	 3	 14
 
 ANFIS-1		                       Predicted classes 		  Total
 
	 1 (Complete)	 2 (Partial) 	 3 (Stable)	
True classes	 1 (Complete)	 1	 0	 0	 1
	 2 (Partial)	 3	 5	 1	 9
	 3 (Stable)	 1	 0	 3	 4
Total	  	 5	 5	 4	 14
 
 ANFIS-2		                       Predicted classes 		  Total
 
	 1 (Complete)	 2 (Partial) 	 3 (Stable)	
True classes	 1 (Complete)	 1	 0	 0	 1
	 2 (Partial)	 0	 9	 0	 9
	 3 (Stable)	 0	 1	 3	 4
Total	  	 1	 10	 3	 14
 
 MLP Classifier		                       Predicted classes 		  Total
 
	 1 (Complete)	 2 (Partial) 	 3 (Stable)	
True classes	 1 (Complete)	 1	 0	 0	 1
	 2 (Partial)	 1	 8	 0	 9
	 3 (Stable)	 0	 2	 2	 4
Total	  	 2	 10	 2	 14
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In the test group, the F1 scores of MLPNN-1, 
MLPNN-2, ANFIS-1, ANFIS-2 and MLP Classi-
fier algorithms are 0.714, 0.786, 0.643, 0.929 and 
0.725, respectively. The highest accuracy rate was 
achieved with the ANFIS-2 model. 14 cases were 
used in the test group of these models, and AN-
FIS-2 correctly predicted one case with complete 
response, all nine cases with partial response and 
three of four cases with stable response, and the 
mean recall was 0.917, precision was 0.967 and 
mean F1 score was 0.935, while the accuracy rate 
was 0.929, and it was determined as the best pre-
diction algorithm in this patient group.

DISCUSSION

Imaging methods are an integral part of cancer 
treatment. They guide the clinician in both stag-
ing, treatment planning and post-treatment disease 
follow-up. However, the fact that similar results 
cannot be obtained in every patient with the same 
treatment at the same stage directs the clinician to 
personalized treatments. The personalized treat-
ment decision is quite complex. It is known that 
many other factors that we do not yet know, from 
environmental and genetic factors to nutritional 
habits, can also change tumor behavior. Radiomics 
are promising as a guiding biomarker in this re-
gard. If radiosensitive or radioresistant tumors can 
be determined before treatment, treatment strate-

Table 6. The testing performance results of developed models

MLPNN-1
Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score

1 (Progressive)	 1.000	 0.760	 0.333	 0.704	 0.500	 0.648

2 (Regressive)	 0.778		  0.777		  0.778	

3 (Stable)	 0.500		  1.000		  0.667	

Accuracy	 0.714

MLPNN-2

Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score

1 (Progressive)	 1.000	 0.796	 1.000	 0.822	 1.000	 0.805

2 (Regressive)	 0.889		  0.800		  0.842	

3 (Stable)	 0.500		  0.667		  0.571	

Accuracy	 0.786

ANFIS-1

Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score

1 (Progressive)	 1.000	 0.769	 0.200	 0.650	 0.333	 0.599

2 (Regressive)	 0.556		  1.000		  0.714	

3 (Stable)	 0.750		  0.750		  0.750	

Accuracy	 0.643

ANFIS-2

Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score

1 (Progressive)	 1.000	 0.917	 1.000	 0.967	 1.000	 0.935

2 (Regressive)	 1.000		  0.900		  0.947	

3 (Stable)	 0.750		  1.000		  0.857	

Accuracy	 0.929

MLP Classifier

Classes	 Recalls	 Mean recall	 Precisions	 Mean precision	 F1-scores	 Mean F1-score

1 (Progressive)	 1	 0.796	 0.500	 0.767	 0.667	 0.725

2 (Regressive)	 0.889		  0.800		  0.842	

3 (Stable)	 0.500		  1.000		  0.667	

Accuracy	 0.725
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gies can be changed accordingly. Radiomics is still 
in the study phase and is not used in routine clinical 
practice. However, if standard radiomics that show 
radioresistance and the most accurate algorithms 
can be found, we can be one step closer to person-
alized treatment. The -omic suffix emerged from 
molecular biology to describe the characterization 
of biological molecules (such as DNA and genom-
ics, proteins and proteomics). Today, it is also used 
for research areas that produce complex and high-
dimensional information from some data.16 Radi-
omics can be thought of as signatures or finger-
prints of tumors.

In the current pilot study, 7 important radiomic fea-
tures were found in RT planning 4DCT for predict-
ing SBRT response. These radiomics include both 
first order and second order features. First order 
features show the mean, median, maximum, mini-
mum values of voxel intensities independent of 
spatial relationship and features such as asymme-
try, kurtosis, entropy, and uniformity. Second order 
features show the relationships between neighbor-
ing voxels.17 The first order features found to be im-
portant in the current study are ‘CONVENTION-
AL_HUmin’, ‘CONVENTIONAL_HUKurtosis’, 
‘DISCRETIZED_HUKurtosis’, ‘DISCRETIZED_
HUExcessKurtosis’, while second order radiomics 
are ‘GLCM_Correlation’, ‘NGLDM_Coarseness’ 
and ‘NGLDM_Busyness’.

Luo et al. created 3 models as radiomic model, 
clinical model and combined model in patients di-
agnosed with lung cancer who underwent SBRT 
and evaluated all 3 models. They extracted 1502 
radiomic features from CT images taken before 
SBRT and 4 important radiomic features were 
found with LASSO method. These 4 important 
variables were found as wavelet-LLL_glszm_
SmallAreaEmphasis, wavelet-LHH_glcm_Join-
tAverage, wavelet-LHH_ngtdm_Complexity, and 
squareroot_glcm_DifferenceEntropy. As a result 
of multivariate analysis of clinical parameters, 
clinical stage, platelet count and minimum dose 
received by GTV were determined as important 
variables. Logistic regression method was used to 
create the model. AUC (area under curve) values 
of radiomic model, clinical model and combined 
model were 0.811, 0.845 and 0.911, respectively 
and the combined model with the highest perfor-

mance was accepted. According to this study, a 
combined model based on radiological features, 
clinical and dosimetric parameters can improve the 
prediction of 1-year local control in lung cancer 
patients undergoing SBRT.18 Although only lung 
cancer cases were included in our study, there were 
both early-stage, locally advanced and metastatic 
cases, and it is a heterogeneous group, and com-
bined models were used. In our study, only early-
stage lung cancer cases were included, but a single 
model (radiomic model) was used. Although dif-
ferent patient groups and different models were 
used, the accuracy rates were high in both the study 
of Luo et al. and our study.

Cilla et al. evaluated 80 lesions of 56 patients with 
lung oligometastasis who underwent SBRT. GTV 
was contoured on the CT scan taken before SBRT 
and 107 radiomic features were extracted from 
these GTVs. Four of the 107 radiomics were found 
to be significant radiomics. These radiomics were 
‘surface to volume ratio’, ‘the skewness’, ‘the cor-
relation’ and ‘the grey normalized level uniform-
ity’. No statistically significant relationship was 
found between the response in clinical parameters. 
Logistic regression (LR) and the classification and 
regression tree analysis (CART) models were used. 
Area under the curve for CR prediction was 0.707 
and 0.753 for the LR and CART models, respec-
tively.19

In another study conducted with both early stage 
and oligometastasis, 85 tumors and 69 patients 
were evaluated. GTV was contoured from CT im-
ages taken before SBRT and the aim was to predict 
the response to SBRT. 110 radiomic features were 
extracted. Support vector machine (SVM) was 
used to create the model. AUC was used in model 
performance evaluation. Skewness and root mean 
squared were identified as radiomic predictors of 
response to SBRT. The accuracy rate of the SVM 
machine learning model in prediction was 74.8%. 
AUCs in the prediction of complete response, par-
tial response and non-response cases were 0.86, 
0.94 and 0.85, respectively.20 This study was con-
ducted with a heterogeneous group and only the 
radiomic model was evaluated.

Kurtosis is a measure of the ‘peakedness’ of the 
distribution of values in the ROI. GLCM_Correla-



38    Number: 1   Volume: 35   Year: 2025   UHOD

International Journal of Hematology and Oncology

tion is Linear dependency of gray level values to 
their respective voxels in the GLCM.21

In a study evaluating SBRT-related lung toxic-
ity and oncological outcomes with radiomics, 
GLCM-correlation radiomic was found to be as-
sociated with local recurrence and death. Tumors 
with high kurtosis radiomic were associated with 
worse overall survival.22 In our study, kurtosis and 
GLCM_Correlation are among the important radi-
omics affecting the SBRT response. There are also 
other studies showing the relationship between 
radiomics including kurtosis features and disease-
free survival.23 In the study conducted by Yu et 
al. with patients diagnosed with stage 1 NSCLC 
who underwent SBRT, it was planned to evaluate 
oncological outcomes. 147 patients were included 
in the training cohort and 295 cases were included 
in the validation cohort, and 12 radiomic features 
were extracted from the CT images obtained be-
fore SBRT. Two of these 12 radiomics were deter-
mined as important variables, namely kurtosis and 
the GLCM_ homogeneity2. These radiomics were 
found to be associated with overall survival, dis-
tant metastasis and borderline regional recurrence 
(24). In the study conducted by Mattonen et al., 
they made early prediction of local recurrence in 
CT scans taken after SBRT in 45 early-stage lung 
cancer cases. Of the 44 radiomic features, 5 radi-
omics were determined as significant variables, 
namely GLCM_homogeneity, GLCM_correlation, 
GLCM_energy and grey_level uniformity.25

NGLDM is based on the gray level relationship 
between a pixel or voxel considered as the cent-
er and its neighbors. NGLDM features reflect the 
similarity in gray levels and gray level dependen-
cies across a ROI, with a large dependency em-
phasis and a small dependency emphasis reflect-
ing heterogeneity and homogeneity, respectively.26 
In another study conducted with 102 early stage 
NSCLC cases treated with SBRT, nodal relapse 
and disease-free survival were estimated. GTV 
was contoured using RT simulation 4DCT and 45 
radiomic features were obtained. Six of the 45 radi-
omic features were determined as significant varia-
bles, namely Shape_Sphericity, Shape_Compacity, 
Histo_Energy, GLRLM_RLNU, GLRLM_LRE, 
and NGLDM_Coarseness. NGLDM_Coarseness, 
which was considered an important variable in pro-

gression-free survival in this study, was also found 
to be a significant variable in SBRT response esti-
mation in our study.27 NGLDM_Coarseness meas-
ures the spatial rate of change in intensity, so it can 
be thought that the response rate and PFS increase 
as a result of the change in tumor intensity.

Radiomics are quite promising in terms of person-
alized treatments in cancer treatment. However, 
standardization is required for their use in routine 
clinical practice. In the studies conducted, different 
CTs (3DCT, 4DCT, contrast +/-, different phases of 
4DCT, etc.) are used to extract radiomic features, 
this heterogeneous approach needs to be standard-
ized. There may be differences between clinicians 
in the segmentation phase of GTV, which may pre-
vent finding the right radiomic. With a highly ac-
curate artificial intelligence-based application ac-
companied by guides, contours without individual 
differences may be obtained in the future. In the 
radiomic extraction phase, there are many differ-
ent commercial software or artificial intelligence 
methods, and important variables are evaluated 
with different artificial intelligence algorithms. All 
of these create heterogeneity in predicting onco-
logical outcomes. In order to be able to move into 
clinical routine, these stages must first be standard-
ized.

In our current study, GTV was determined by 
two different radiation oncologists with at least 
10 years of experience via 4DCT. The limitations 
of this study are the small number of patients and 
the cohort was created with patients from a sin-
gle center. 55 radiomics were extracted with the 
Lifex program and only pre-treatment radiom-
ics were evaluated. Only radiomics belonging to 
GTV were evaluated and peritumoral radiomics 
were not evaluated. Considering that peritumoral 
immune response also affects oncological results, 
peritumoral radiomics may also be important. In 
addition, a model was created only with radiomics 
without including clinical parameters.

Conclusion

In oncological treatments, finding the most ef-
fective treatment with the least side effects and 
achieving personalized treatments with a good 
therapeutic index are very important in terms of 
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oncological results and toxicity. When radiom-
ics are considered as a signature of the tumor, it 
promises hope for correct and effective treatment 
decisions. However, there are many steps that need 
to be standardized and more patient numbers and 
multicenter studies are needed.
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