Histopathological Alterations in the Kidney Tissue Following Topical Ankaferd Hemostat Application in a Rat Renal Injury Model

Derya KARAKOC¹, Eylem AKAR², Salih AKSU³, Aysegul UNER⁴, Arif OZDEMIR¹, Erhan HAMALOGLU⁵, Ahmet OZENC⁶, Ahmet DOGRUL⁷, Bibihan MEMEDOV A⁸, Ibrahim C. HAZNEDAROGLU³

¹ Hacettepe University Faculty of Medicine, Department of General Surgery, Ankara, TURKEY
² Hacettepe University Faculty of Medicine, Department of Pathology, Ankara, TURKEY
³ Hacettepe University Faculty of Medicine, Department of Hematology, Ankara, TURKEY
⁴ Hacettepe University Faculty of Medicine, Department of Pathology, Ankara, TURKEY

ABSTRACT

Ankaferd Blood Stopper (ABS) is a novel topical hemostatic agent. ABS has been approved in Turkey for clinical hemorrhages, when the conventional control of bleeding by ligature and/or conventional hemostatic measures is ineffective. ABS has many cellular effects and could modulate numerous hemostatic proteins at the tissue and blood. ABS-induced formation of the protein network with vital erythroid aggregation covers the entire physiological hemostatic process. The aim of this study was to assess histopathological alterations due to topical ABS administration at the renal tissue level. Thirty-six Wistar rats weighing 70 to 80 gm were included into the study. The rats were divided into two groups as “the ABS-applied group” (ABS−G) and “the control group” (C−G). The animals in both groups were then again divided into the three subgroups of “postoperative (Postop.) 60th minutes”, “Postop. 48th hours”, and “Postop. 15th day”. Therefore, there were six rats in each of the subgroups at the end of the analyses. The standard renal injury sites in the rats of ABS−G were applied 2 ml. of topical ABS, whereas 2 ml. of topical saline was applied to the renal injury sites of the rats in the C−G group. We detected significant erythrocyte aggregation and the accumulation of siderophages in the kidney tissue just after 60 minutes of ABS application persisting over 15 days. Our results indicated red blood cell accumulation and siderophages following the use of ABS are compatible with the suggested ‘mechanism-of-action’ of ABS that ABS-induced formation of the protein network with vital erythroid aggregation covers the entire physiological hemostatic process. Further experimental search is needed to find out the molecules inside the ABS protein library leading to the ABS-induced aggregation at the renal tissue level.

Keywords: Ankaferd Blood Stopper, Renal Injury, Erythrocyte Aggregation, Siderophages Accumulation

ÖZET

Bir Rat renal hasar Modelinde Topikal Ankaferd Hemostat Uygulaması Takiben Böbrek Dokusunda Gelen Histopatolojik Değişkenlikler

Ankaferd Blood Stopper (ABS) yeni geliştirilmiş bir topikal hemostatik ajandır. ABS, ülkemizde klasik yöntemlerle durdurulamayan veya bu uygulamaların yetersiz olduğu klinik kanamaların topikal kontrolünde kullanılmaktadır. ABS çok değişken hücresel etkilere sahip olup dokular ve kandaki pek çok hemostatik moleküllü etkilemektedir. ABS tarafından geliştirilen özgül protein ağı, vital entroit agregasyona yol açarak tüm fizyolojik hemostatik süreci yönlendirmektedir.
INTRODUCTION

Ankaferd Blood Stopper (ABS), a novel topical hemostatic agent, has been approved in Turkey for clinical hemorrhages, when the conventional control of bleeding by ligature and/or conventional hemostatic measures is ineffective. ABS is clinically effective in bleeding individuals with normal hemostatic parameters and in patients with deficient primary hemostasis and/or secondary hemostasis. ABS-induced formation of the protein network with vital erythroid aggregation covers the entire physiological hemostatic process. Mainly, there are distinct important components of the ABS-induced hemostatic network. Vital erythroid aggregation takes place with the spectrin, ankrin and actin receptors on the surface of red blood cells. Those proteins and the required ATP bioenergy are included in the ABS protein library. Ankaferd also upregulates GATA/FOG transcription system affecting erythroid functions. Urotensin II is also an essential component of Ankaferd and represents the link between injured vascular endothelium, adhesive proteins, and active erythroid cells. Those concepts have been developed via MALDI-TOF proteomic molecular analyses, cytometric arrays, transcription analysis, and SEM ultrastructural examinations as well as numerous investigations interacting with in vitro and in vivo research settings.

ABS has many cellular effects. ABS has been shown to affect renal tubular apoptosis based on the level of hemorrhage. When the bleeding associated with the surgery of partial nephrectomy is mild or moderate, ABS can initially increase renal tubular apoptosis. On the contrary; during the increased amount of massive bleeding from the kidney tissue, ABS decreases apoptosis in renal tubular cells. Therefore, ABS modulates the cellular apoptotic responses to hemorrhagic stress as well as its hemostatic hemodynamic activity. The finding of ABS-induced thrombin receptor PAR-1 down-regulation gives an additional clue on the possible mechanism of ABS associated apoptosis modulation at the tissue level. Preliminary findings focusing on in vitro anti-neoplastic effects of ABS also prompt to begin for searching the ABS effects at the cellular level in health and in neoplastic diseases.

ABS has many effects on proteins at the tissue and blood. Dose-dependent reversible PAR-1 down-regulation is mediated by ABS. ABS induced sustained PAR-1 down-regulation in the presence of lipopolysaccharides (LPS). Those findings are compatible with other investigations focusing on the endothelial hemostatic molecules, EPCR and PAI-1. ABS had dual diverse dynamic reversible actions on EPCR and PAI-1 inside vascular endothelial cells also in the model of HUVEC. Sudden anti-hemorrhagic efficacy of ABS via immediate enhanced expression of pro-hemostatic PAI-1 and down-regulated anti-coagulant EPCR upon the exposure of ABS. Those findings indicated that ABS may act as a topical biological response modifier.

Acute mucosal toxicity, hematotoxicity, hepatotoxicity, nephrotoxicity, and biochemical toxicity were not observed during the short-term oral ABS administration in rabbits. Clinical Phase I study of ABS also disclosed topical and systemic safety of its clinical external application. However, Turhan et al. suggested hepatic erythrocyte-agglutinating activity of intravenous systemic ABS administrati-
Moreover, a recent study suggested in vitro ABS cytotoxicity on the human pulp fibroblasts. 17 Therefore, ABS effects on the tissue level should also be searched after its topical usage in the injury models. The aim of this experimental study was to assess short- and mid-term topical kidney safety following the topical administration of ABS in rats. We intended to analyze histopathological topical tissue effects of ABS administration at the renal tissue level.

MATERIALS AND METHODS

Thirty-six Wistar rats weighing 70 to 80 gm were included in this study. The study was performed with the approval of Hacettepe University animal research ethical committee. All of the rats were transferred from the hospital animal research center. The rats were housed in stainless steel cages in an animal room maintained at 22°C with 12 hours light periods. The rats were divided into two groups as “the ABS-applied group” (ABS-G) and “the control group” (C-G). The animals in both groups were then again divided into the three subgroups of “postoperative (Postop.) 60th minutes”, “Postop. 48th hours”, and “Postop. 15th day”. Therefore, there were six rats in each of the subgroups at the end of the analyses.

Intraperitoneal xysilasine HCl 5 mg/kg and ketamine 30 mg/kg were applied to perform proper anesthesia for all of the animals in the study. After administering prophylactic single dose broad-spectrum antibiotics a 5 cm. midline incision was made in the abdomen after sterile preparation and draping. The right kidney was completely mobilized. To achieve hilar control the right renal artery and vein were occluded with a Rommel vascular clamp. Standard renal injury in the right kidney was generated between the upper and lower poles of the anterior side of the kidney as a cut of 3 cm longevity and 2 cm in depth with a 15 number knife. The renal injury sites in the rats of ABS-G were applied 2 ml. of topical ABS, whereas 2 ml. of topical saline was applied to the renal injury sites of the rats in the C-G group. After the procedure sponges were used to collect all visible clots and blood, and the kidney was replaced in the renal fossa. The surgeon with an assistant immediately began repair procedures for the abdomen. The rats of the “Postop. 60th minutes” subgroups were followed for 60 minutes and then the kidney was surgically removed for histopathological analyses. The rats of the “Postop. 48th hours” subgroups were followed for 48 hours and then the kidney was surgically removed via re-laparotomy for histopathological analyses. The rats of the “Postop. 15th day” subgroups were followed
for 15 days and then the kidney was surgically re-
removed via re-laparotomy for histopathological
analyses.

Pathological specimens were evaluated with em-
phasis on the presence or absence of giant cell re-
tion, acute inflammation, for-eign material reacti-
on, fibrosis, necrosis, erythrocyte aggregation, mi-
rovascular proliferation, fibroblastic activation, si-
derophages, glomerular necrosis and cal-cification
(Figure 1 and Figure 2).

Results were analyzed with SPSS® 12.0 for Win-
dows®. Definitive statistics were determined as the
mean ± SD, minimum, maximum and percent. The
Fisher, Kruskal-Wallis and Mann-Whitney U tests
were used to evaluate significance among the gro-
ups. The post hoc Bonferroni test was also used to
correct the significance level in sub-group compa-
risons. The differences were considered as statisti-
cally significant when the P value was less than
0.05.

RESULTS
A total of 36 open standard renal injuries were ge-
erated, and significant bleeding was induced in
every case. The rats used for this experimental
study had similar morphometric characteristics in
body and kidney shape. The injured kidney tissues
were also similar in size and shape. Most of the ani-
imals survived during the operation and postoperati-
ve period. Two rats in the C-G were died the first
day following the operation, and one rat in the
ABS-G was died on the surgery day.

Giant cell reaction, acute inflammation, fibrosis,
glomerular necrosis, adhesion, calcification forma-
tion, fibroblast activation and microvascular proli-
feration were not statistically different among the
groups (p> 0.05). Erythrocyte aggregation and the
accumulation of siderophages were significantly
higher in the ABS-G in comparison to the C-G gro-
p (p< 0.05). There was no erythrocyte aggregation
in any of the rats of the “Postop. 60th minutes” of
C-G group. However, significant erythrocyte aggre-
gation was observed in all of the rats of the “Pos-
top. 60th minutes” of ABS-G group. Likewise,
there was no siderophages in any of the rats of the
“Postop. 60th minutes” of C-G group; whereas sig-
nificant accumulation of siderophages was obser-
ved in all of the rats of the “Postop. 60th minutes”
of ABS-G group. Erythrocyte aggregation and the
accumulation of siderophages were persistent and
sustained in the “Postop. 48th hours”, and “Postop.
15th day” of the animals of ABS-G group (Figure 1
and Figure 2).

DISCUSSION
In this study, we detected significant erythrocyte
aggregation and the accumulation of siderophages
in the kidney tissue just after 60 minutes of ABS
application persisting over 15 days. Those findings
are compatible with the previous studies by Huri et
al testing topical ABS in the in the partial nephrec-
tomy and renal trauma models.18-20 Essential eryth-
roid proteins (Ankrin recurrent and FYVE bundle
containing protein 1, Spectrin alpha, Actin-depoli-
merisation factor, Actin-depilmerizing factor, Lim
bundle and actine binding subunit 1 isoform a,
LIM bundle and actine binding subunit 1 isoform b,
NADP-dependent malic enzyme, NADH dehydro-
genase (Ubiquinone) 1 alpha subcomplex, Mitoc-
hondrial NADP (+) dependent malic enzyme 3,
Ribulose bisphosphatecarbocislae large chain,
Matu-
rase K) and the required ATP bioenergy (ATP
synthase, ATP synthase beta subunit, ATP synthase
alpha subunit, ATP-binding protein C12, TP
synthase H+ transporter protein, ADF, Alpha-1,2-
glycosyltransferase ALG10-A) are included in the
protein library of ABS. ABS also up-regulates GA-
T/A/FOS transcription system affecting erythroid
functions and urotensin II.4-6 Therefore, our results
indicating red blood cell accumulation and siderop-
phages following the use of ABS are compatible
with the suggested ‘mechanism-of-action’ of ABS
that ABS-induced formation of the protein network
with vital erythroid aggregation covers the entire
physiological hemostatic process. Further experi-
mental search is needed to find out the molecules
inside the ABS protein library leading to the ABS-
induced aggregation at the renal tissue level.

ABS has positive effects on early bone healing to-
gether with decreasing inflammation and necrosis
and increasing new bone formation.21 The accumu-
lation of siderophages in the kidney tissue may be a
sign of tissue repair in our study. Furthermore, a re-
cent study has demonstrated that adding ABS on
the pancreatic fluid produces aggregates of protein
network resulting in a solid layer over the pancreatic fluid like a frozen gel with important in vitro biochemical alterations.22 ABS has also in vitro anti-bacterial effects. Ankaferd, besides its hemostatic activity, may also inhibit the growth of bacteria.23-25 Anti-infectious activity of Ankaferd may represent an advantage over its current clinical use, since it inhibits the growth of bacteria in the area used mainly for its hemostatic activity such as traumatic infected wounds. The antimicrobial activity of Ankaferd was tested against many bacterial pathogens. The isolates included A. baumannii, E. coli, K. pneumonia, P. aeruginosa, Enterobacter spp., Stenotrophomonas maltophilia, methicillin resistant coagulase negative Staphylococcus, vancomycin susceptible Enterococcus and vancomycin resistant Enterococcus (VRE).23-25 The mechanism of action regarding the anti-infective effects of ABS is currently unknown. Anti-infective actions of ABS may be related to its hemostatic functions acting on PAR-1, EPCR and PAI-1,10,13 affecting distinct steps of coagulation and vascular endothelium. The interrelationships between ABS-induced immune system-driven loss of intestinal goblet cells, anti-infective actions of ABS, and its association with hemostatic molecules remain to be elucidated. Based on the results of our present study and the above-mentioned findings, next experimental step shall be to test the topical action of ABS in infected renal injury model.

It has been suggested that ABS could act as a topical biological response modifier via demonstrating diverse actions of ABS in the presence of LPS.9,13 “LPS challenge” refers to the process of exposing a biological environment to an LPS which may act as a toxin to test immunological and hemostatic responses. LPS application to HUVEC caused ABS-induced additional sustained significant down-regulations in the expressions of PAR-1 mRNA.10 Sustained significant PAR-1 down-regulation mediated by ABS in the presence of LPS seems to have a protective role against endothelial injury. Therefore, there are molecular links underlying ABS-pleiotropic cellular actions acting on anti-infective, wound healing, and apoptotic processes.10,6,7,10,13,17,24-32 Since renal system is located at the crossroads of cellular neoplastic development and protein secretions, the unique effects of ABS on distinct renal cell types shall be investigated in future in vivo animal models mimicking cancer models. Our present study represent true basis for the design of such experimental animal trials.

ABS has been shown to affect renal tubular apoptosis based on the level of hemorrhage in a previous study.9 When the bleeding associated with the surgery of partial nephrectomy is mild or moderate, ABS can initially increase renal tubular apoptosis. On the contrary; during the increased amount of massive bleeding from the kidney tissue, ABS decreases apoptosis in renal tubular cells.9 Therefore, ABS modulates the cellular apoptotic responses to hemorrhagic stress as well as its hemostatic hemodynamic activity.

Since ABS is currently being developed in basic and clinical grounds, those novel observations cast future studies focusing on the pleiotropic effects of this unique novel hemostatic agent.33-37 Future experimental trials should focus on the in vivo ABS effects on renal disease expression patterns. ABS protein library and its tissue effects seem to be a starting point to begin designing those kinds of investigations in the kidney system.

Controlled clinical studies conducted to evaluate the effectiveness of ABS in distinct states of bleeding disorders documented the safety and efficacy of traditional Ankaferd hemostat in comparison to conventional anti-hemorrhagic medications.38-44 The first randomized controlled clinical study was reported in 49 patients with anterior epistaxis. In patients to whom ABS was applied, significant differences in effective control of anterior epistaxis were observed compared to phenylephrine. Similarly, another clinical trial has also demonstrated the effectiveness of ABS in children undergoing tonsillectomy. In this prospective controlled study, the success of ABS and the traditional knot-tie approach to reach hemostasis for patients undergoing tonsillectomy was evaluated. ABS is not only safe and efficient, but also it decreases intra-operative bleeding and reduces operating time compared to the traditional hemostasis methods after cold knife dissection tonsillectomy. The effectiveness of ABS in cancer patients was also reported in a study by Al et al.2 Sixty-nine cancer patients that were admitted for port insertion to a university hospital was randomized either to take a wet compress form of ABS or regular dry sterile sponges to stop the bleeding.
that occurs during the clinically indicated vascular port insertion. The average time needed to stop the bleeding was 32.97 ± 29.9 s for ABS group and 123.75 ± 47.5 s for dry sponge group. ABS was proven to stop local bleeding in a shorter time, with a lower recurrence rate in comparison with the sterile sponge. Additional clinical studies about anti-hemorrhagic efficacy of ABS on the bleeding due to adenoidecotomy, the surgical bleeding of thyroidectomy, gastrointestinal bleedings and dental bleedings were performed with similar beneficial outcomes. The findings of our present experimental study represent a starting point to investigate clinical anti-hemorrhagic effects of ABS hemostat.

REFERENCES

Correspondence
Dr. Derya KARAKOÇ
Hacettepe Üniversitesi Tip Fakültesi
Genel Cerrahi Anabilim Dali
06100 Sihhiye, ANKARA / TURKEY
Tel: (+90.312) 305 17 30
Fax: (+90.312) 305 16 14
e-mail: dkarakoc@yahoo.com